Chapter 3
The Real Numbers
3.1 Natural Numbers and Induction.

In this course, we let

$$
\mathbb{N}:=\{1,2,3, \ldots\}
$$

denote the set of all natural numbers.
First \& all, let us assume the important property of \mathbb{N} as the following areian.
Axiom 3.1.1: (Well-Ordering Property of \mathbb{N})

If S is a nonempty subset of \mathbb{N}, then there exists an element $m \in S$ such that $m \leqslant s$ for all $s \in S$.
[If $\phi \neq S \subseteq \mathbb{N}$, then $\exists m \in S \ni m \leqslant s, \forall s \in S$]
Example: (1) $S=\{2,4,6,8, \ldots, 2 n, \ldots\}$

Consider $S \neq \varnothing, S \subseteq \mathbb{N}$, we have $\exists m=2 \in S \rightarrow \forall s \in S, m \leqq s$.
(2) $S=\{10,000,000,10,000,001, \ldots\}$

Therm 3.1.2 [Principle of Mathematical Induction] [rànmsoditu is amado aus]

Let $P_{(n)}^{\prime}$ be a statement for all $n \in \mathbb{N}$. Suppose that:
(1) $P(1)$ is true.
(2) For each $k \in \mathbb{N}$, if Pock) is true, then $P c k+1)$ is also true.
Then $P(n)$ is true for all $n \in \mathbb{N}$.
Prof. [$(p \wedge q) \Rightarrow r \Leftrightarrow(p \wedge q) \wedge \sim r \Rightarrow 3]$
Suppose that the hypotheses (1) and (2) hold true, but $P(n)$ is not true for some $n \in \mathbb{N}$.
Now, we let

$$
S:=\{n \in \mathbb{N}: P(n) \text { is false }\} \text {. }
$$

Since we suppose that P_{n}, is false for some $n \in \mathbb{N}$, we can ensure that $S \neq \varnothing$.

Then, the well-ordering principle of N guarantees that there exists an element $m \in S$ such that $m \leqslant s$ for all $s \in S$. Since $m \in S$, we note that $P_{(m)}$ is false O_{n} the other hand, we know that $P(1)$ is the, it follows that $1 \& S$. This means that $m>1$. (Why?)

Since $m \in \mathbb{N}$ and $m>1$, we know that $m-1 \in \mathbb{N}$ and $m-1 \notin S$. This implies that $P(m-1)$ is true. By using (2), we obtain that $P(m-1+1)$ is also true, that is $P(m)$ is true. Thus, we get that $m \notin S$, which leads to a contradiction with $m \in S$.

Therefore, we conclude that $P(n)$ must be true for all $n \in \mathbb{N}$.

Pumansunno Pos Principle of Mathematical Induction unneosmrooías ninanal ass Nostrums
(1) Basis for Induction
(2) Induction Step

Example 3.1.3: Prove that $1+2+3+\cdots+n=\frac{1}{2} n(n+1)$ for every $n \in \mathbb{N}$.

Proof. Let $P_{(n)}$ be the statement

$$
1+2+3+\cdots+n=\frac{1}{2} n(n+1)^{n}
$$

Basis for induction: Let us consider "P(1)".
Note that

$$
1=\frac{1}{2}(1)(1+1),
$$

this means that $P_{c} \frac{1}{2}$ is true.
Induction Step: Let k be given and assume that $P(k)$ hods. That is,

$$
1+2+\cdots+k=\frac{1}{2} k(k+1)
$$

We claim that $P(k+1)$ is ${ }^{2}$ also true.
Consider,

$$
\begin{aligned}
\underbrace{1+2+\cdots+k+(k+1)}_{=\frac{1}{2} k(k+1)} & =\frac{1}{2} k(k+1)+(k+1) \\
& =\frac{1}{2}[(k c+1)+2(k+1)] \\
& =\frac{1}{2}(k+1)(k+2) \\
& =\frac{1}{2}(k+1)((k+1)+1)
\end{aligned}
$$

which means that $P(k+1)$ is also true.
Thensone, by using the principle of mathematical induction, we conclude that $P_{\text {ans }}$ is tome for all n EN.

Theorem 3.1.6:
Let $m \in N$ and let $P(n)$ be a statement for each $n \geqslant m$. Suppose that:
(i) $P(m)$ is true.
(2) For each $k \geqslant m$, if $P c k$) is true, then also Pck+1) is also true.
Then $P_{\text {ans }}$ is true for all $n \geqslant m$.
Proof. [Exercise 1]
Example: Prove that $2^{n}>2 n+1$ for all $n \geqslant 3$.
Proof.
For $n=3, w$, note that

$$
2^{3}=8>7=2(3)+1
$$

which implies that the statement hods for $n=3$.
Let $k \geqslant 3$ be given and suppose that

$$
2^{k>2 k+1}
$$

We claim that $2^{k+1}>2(k+1)+1$.
Consider, $\quad[2 k+2+1]$

$$
\begin{aligned}
2^{k+1} & =2 \cdot 2^{k} \\
& >2(2 k+1) \\
& =4 k+2 \\
& =2 k+2+2 k>2 k+2+1
\end{aligned}
$$

$$
=2(k+1)+1
$$

which means that $P(k+1$) is also tone. Hence, we conclude that $P(n)$ is true for all $n \geqslant 3$.

