Chapter 3 The Real Numbers 3.1 Natural Numbers and Induction. In this course, we let $N := \{1, 2, 3, ...\}$ denote the set of all natural numbers. First & all, let us assume the important property of IN as the following aveim. Axim 3.1.1: (Well - Ordering Property of N) [ranns ouron ovin a rojankaras] If S is a nonempty subset of IN, then there exists an element m ES such that m ≤ s for all s ∈ S. [If \$\$ = S = N, then Ime S = m < s, UseS] Example: (1 S={2,4,6,8,...,2n,...}

Consider $S \neq \emptyset$, $S \subseteq IN$, we have $\exists m = 2 \in S \ni \forall s \in S, m \leq s$. 2 S = { 10,000,000, 10,000,001, ... f เสือเมือองงางหนึ่งที่มี คราม สำคัญ อย่างมาก จิณา 5 พิสุณภาพข้างหนึ่งที่มี คราม สำคัญ อย่างมากจิณา 5 พิสุณภาพข้างการจาการ พิรายละเอียง ลังนี้ Therrow 3.1.2 [Principle of Mathematical Induction] Example Jillin and not and] Let Pin be a statement for all nell. Suppose that : (1) P(1) is true. (2) For each k = N, if Pck, is true, then Pck+1) is also true. Then Pcn, is true for all hell. Proof. [(pnq) =>r (=> (pnq) n~r =>]] Suppose that the hypotheses (1) and (2) hold true, but Pcn, is not true for some nEN. Salse Nov, we let S:= {n e N : Pcn) is false {. Since we suppose that Pan, is false for some ne IN. we can ensure that S = Ø.

Then, the well-ordering principle of N guarantees that there exists an element <u>m∈S</u> such that m≤s for all s∈S. Since m∈S, we note that Pcms is false On the other hand, we know that Pcas is twe, it follows that 1 ≠ S. This means that m>2. (Why?)

Since $m \in \mathbb{N}$ and m > 1, we know that $m - 1 \in \mathbb{N}$ and $m - 1 \notin S$. This implies that PC m - 1 is true. By using (2), we obtain that PC m - 1 + 1) is also true, that is PCm is true. Thus, we get that $\underline{m \notin S}$, which leads to a contradiction with $m \notin S$.

Therefire, we conclude that Pcn, must be true for all n EIN.

Jumen nunn 15 Principle of Mathematical Induction union nooden anany os and uns

- (1) Basis for Induction
- @ Induction Step

Example 3.1.3: Prove that $1+2+3+\dots+n = \frac{1}{2}n(n+1)$ for every nEN.

Proof. Let Pcn, be the statement

$$1+2+3+\dots+n = \frac{1}{2}n(n+1)^n$$

Basis for induction: Let us consider "Pas". Note that

1 = 1(1)(1+1),this means that Pets is true. Induction Step: Let k be given and assume that Pek) holds. That is, $1+a+\dots+k = 1 \text{ kech}+1).$ We claim that Pek+1) is also true. Consider, $\frac{1+a+\dots+k}{2} \text{ the}+1) = \frac{1}{2} \text{ kech}+1) + (k+1)$ $= \frac{1}{2} (k+1) + a(k+1)]$ $= \frac{1}{2} (k+1)(k+1),$

which means that Pcken, is also the. Thenfore, by using the principle of mathematical induction, we conclude that Pcn, is the for all NGNN.

Impyymoddda จะมีน Mronintendid to PMI Nems Hommidian หันในอริ่งสำหรับอำเภาและบุ m Pay

Therem 3.1.6: Let mEN and let Pon, be a statement for each n >m. Suppose that : (1) Pcm> is true. (2) For each k > m, if Pck, is true, thm also Pck+1) is also the. Then Pons is true brall n >m. Proof [Exercise!] Example: Prove that 2">2n+1 Brall n>3. Prost For n = 3, we note that $2^3 = 8 > 7 = 2(3) + 1$, which implies that the statement hdds for n=3. Let $k \ge 3$ be given and enprose that $2^{k} \ge 2k+1$. We claim that $2^{k+1} \ge 2(k+1)+1$. $Consider, a^{k+1} = 2 \cdot 2^k$ [2k+2+1]> 2(2k+1)= 4k+2= 2k + 2 + 2k - 2k + 2 + 1

= 2(k+1)+1, which means that Pc(k+1) is also true. Hence, we conclude that Pcn_2 is true for all $n \ge 3$.

D