

$$
S_{n}>M
$$

11ล.nterrnmmbe $\lim _{n \rightarrow+\infty} s_{n}=+\infty$

(diverges tog $-\infty$) 内i N้าusinn $M \in \mathbb{R} 0.2$

$$
S_{n}<M
$$

noifterinnumbe $\lim _{n \rightarrow+\infty} \rho_{n}=-\infty$

- Tais
(1) n') $\lim _{n \rightarrow+\infty} S_{n}=+\infty$ ॥10 $\lim _{n \rightarrow+\infty} t_{n}=+\infty$
(d) on $\lim _{n \rightarrow+\infty} t_{n}=-\infty$ ND $\lim _{n \rightarrow+\infty} s_{n}=-\infty$

Pactustrmerioon o: d $N \in \mathbb{N}$ niniol

$$
t_{n} \geqslant s_{n}>M \quad \forall n \geqslant N
$$

Nimb $\sin t_{n}=+\infty$.
$n \rightarrow+\infty$
nךNyan: fu $\left(s_{n}\right)_{n=1}^{\infty}$ (s)

$$
\lim _{n \rightarrow+\infty} S_{n}=+\infty \text { तobido } \lim _{n \rightarrow+\infty} \frac{1}{s_{n}}=0
$$

ฟたar. \Leftrightarrow Nawn $h_{h \rightarrow+\infty} \lim _{S_{n}}=0$
[o:llonnil $\lim _{n \rightarrow+\infty} s_{n}=+\infty$]

$$
\text { h- } M>0 \text { } \quad \text { : } 7 n \rightarrow h 1=\frac{1}{M}>0
$$

iflounn $\lim _{n \rightarrow+\infty} \frac{1}{s_{n}}=0$ 0.riosod $N \in \mathbb{N}$ stungh

$$
\begin{aligned}
\forall n>N & \Rightarrow \frac{1}{M}=\varepsilon>\left|\frac{1}{s_{n}}-0\right|=\frac{1}{s_{n}} \\
& \Rightarrow s_{n}>M
\end{aligned}
$$

$\mid w \sin : x^{5} u \quad \lim _{n \rightarrow+\infty} S_{n}=+\infty$

(Monotone sequencer and Cauchy sequences)

- Nizovimsiñs (Monotone sequeuc)
 (increasing sequence) ir $S_{n+1} \geqslant S_{n}$ จinusunnneN

(decreasing sequence) in $\delta_{n+1} \leqslant s_{n}$ singing $n \in \mathbb{N}$

مัorivon
Moods: - $\left(a_{n}\right)_{n=n}^{\infty}$ given by $a_{n}=n \quad \forall n \in \mathbb{N}$
\Rightarrow Canning is increasing
$-\left(b_{n}\right)_{n=1}^{\infty}$ given by $b_{n}=3^{n} \quad \forall n \in \mathbb{N}$ BL
$\Rightarrow\left(b_{n}\right)_{n=1}^{\infty}$ is increasing
- ($\left.C_{B L}\right)_{n \rightarrow 1}^{\infty}$ given by $(1,2,2,3,3,3,4,4, \ldots)$ $\Rightarrow\left(C_{n}\right)_{n \rightarrow 1}^{\infty}$ is increasing
- $\left.{ }_{B}^{C} d_{n}\right)_{n+1}^{\infty}$ given by $d_{n}=\frac{1}{n} \quad \forall n \in \mathbb{N}$ $\Rightarrow\left(d_{n}\right)_{n=1}^{n}$ is dec reasing
- $\left(l_{n}\right)_{n+1}^{\infty}$ given by $e_{n}=e \quad \forall n \in \mathbb{N}$
$\Rightarrow(\ln)_{n \rightarrow 1}^{\infty}$ is both increasing and decreasing
- $\left(f_{n}\right)_{n-1}^{\infty}$ given by $f_{n}=(-1)^{n} \quad \forall n \in \mathbb{N}$
$\rightarrow\left(f_{n}\right)_{n \rightarrow r}^{\infty}$ is not monotone
nqu-ytan (Monotone Convergence Theorem, MCT)

wonarnas

$$
\lim _{n \rightarrow e \infty} s_{n}=\sup \left\{s_{n}: n \in \mathbb{N}\right\}
$$

$$
\lim _{n \rightarrow+\infty} s_{n}=\inf \left\{s_{n}: n \in \mathbb{N}\right\}
$$

Arov，\Leftrightarrow ，We have done befine！
 $\left(s_{n}\right)_{n \rightarrow 1}^{\infty}$（T）LAำoiv มrovirm
Mnolo（CSn）$\left(S_{n=1}^{\infty}\right.$ arovirmun
（＠$\left(S_{n}\right)_{n=1}^{\infty}$ వroulrmふつ

 ［onatio lim $s_{n}=s^{-5}$ ］
An $\varepsilon>0$ ．Antm
roviryzurve $\left(S_{n}\right)_{n=1}^{\infty}$ flnolo ais $N \in \mathbb{N}$ O

$$
s_{N}>\bar{S}-\varepsilon
$$

Ansm siusunn $n \geqslant N$

$$
\begin{array}{ll}
& \frac{s}{s}-\varepsilon<s_{N} \leq s_{n} \leqslant \bar{s}<s+\varepsilon \\
\Rightarrow \quad & -\varepsilon<s_{n}-\bar{s}<\varepsilon \\
\Rightarrow \quad & \left|s_{n}-\bar{s}\right|<\varepsilon
\end{array}
$$

Iw miainte $\lim _{n \rightarrow+\infty} S_{n}=\bar{s}$

