

$$
\lim _{n \rightarrow \infty} a_{n}=0 \text { nobbhac } \lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \quad \text { Jum! }
$$

nicots: a am $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}$
 Lhmo $\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{n}\right|=\lim _{n \rightarrow \infty} \frac{1}{n}=0$
Srewit: $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0$

$$
a_{n} \leqslant b_{n} \leqslant c_{n} \quad \forall n \in \mathbb{N}
$$

ㄱ) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$ ॥iे, $\lim _{n \rightarrow \infty} b_{n}=L$
n̆arth: $\operatorname{som} \lim _{n \rightarrow \infty} \frac{\cos n}{n}$
วิวิn रु $-1 \leqslant \cos n \leqslant 1 \quad \forall n \in \mathbb{N}$

$$
\Rightarrow \quad \frac{-1}{n} \leq \frac{\cos n}{n} \leq \frac{1}{n} \quad \forall n \in \mathbb{N}
$$

flosm $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(-\frac{1}{n}\right)=0$
In: $\quad \lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)=0 \quad \| \Rightarrow \lim _{n \rightarrow \infty} \frac{\cos n}{n}=0$

Nrearls: osm $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}$
กƠn) Note! $n \leqslant 2^{n} \quad \forall n \in \mathbb{N}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{n} \geq \frac{1}{2^{n}} \quad \forall n \in \mathbb{N} \\
& \Rightarrow \quad 0 \leqslant \frac{1}{2^{n}} \leq \tilde{a}_{a_{n}}^{\frac{1}{c_{n}}} \quad \forall n \in \mathbb{N}
\end{aligned}
$$

Anam $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} 0=0$
\|ค: $\quad \lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0 \Rightarrow \lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$
N(ardos: oum $\lim _{n \rightarrow \infty} \frac{(-1)^{n+1} \sin n}{n^{2}}$
กิช่ㄲ․ .ิธm $\left|\frac{(-1)^{n+} \sin n}{n^{2}}\right|=\frac{\left|(-1)^{n+1}\right||\sin n|}{\left|n^{2}\right|}$

$$
=\frac{1|\sin n|}{n^{2}} \leqslant \frac{1}{n^{2}}
$$

$$
\Rightarrow \quad 0 \leqslant \frac{\left|\frac{(-1)^{n+1} \sin n}{n^{2}}\right| \leqslant b_{n}}{b_{n}} \frac{1}{c_{n}^{2}}
$$

Anman $\begin{aligned} & \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} 0=0 \\ & \text { H.: } \quad \lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0\end{aligned} \Rightarrow \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} \sin n}{n^{2}}\right|=0$
isogaMnio $\lim _{n \rightarrow \infty} \frac{(-1)^{n+1} \sin n}{n^{2}}=0$
nnarjm: qnen $_{\text {- }}\left(a_{n}\right)_{n \rightarrow 1}^{\infty},\left(b_{n}\right)_{n-1}^{\infty} \subset \mathbb{R}$ of

$$
a_{n} \leqslant b_{n} \quad \forall_{n} \in \mathbb{N}
$$

ब...a

(1) ถ่า $\lim _{n \rightarrow \infty} a_{n}=+\infty$ เล่ $\lim _{n \rightarrow 2} b_{n}=+\infty$
(2) in $\lim _{n \rightarrow \infty} b_{n}=-\infty$ Nas $\lim _{n \rightarrow \infty} a_{n}=-\infty$

Hanordn: asm $\lim _{n \rightarrow \infty} n^{2}(2+\sin n)$
Otrin Anom $\sin n \geqslant-1$

$$
\begin{aligned}
& \Rightarrow \frac{2+\sin n}{b_{n}} \geqslant 2-1=1 \\
& \Rightarrow \frac{n^{2}(2+\sin n)}{a_{n}^{2}} \quad \forall n \in \mathbb{N}
\end{aligned}
$$

ihloonn $\lim _{n \rightarrow \infty} n^{2}=+\infty$ 35/ain

$$
\lim _{n \rightarrow \infty} n^{2}(2+\sin n)=+\infty
$$

nno्रुख्य: Au relr
(c) $\operatorname{\text {in}}|r|<1$ แล่า $\lim _{n \rightarrow \infty} r^{n}=0$
(C) on $|r|>1$ llàn $\lim _{n \rightarrow \infty} r^{n}=+\infty$
(3) Aी $r=1 \operatorname{llin} \lim _{n \rightarrow \infty} r^{n}=1$

Mootos: Dunath res $\lim _{n \rightarrow \infty} \frac{2 \cdot 10^{n}-5^{n}+9 \cdot 3^{n}}{7 \cdot 2^{n} \cdot 5^{n}+10^{n}-1}$
तิธn!

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{2 \cdot 10^{n}-5^{n}+9 \cdot 3^{n}}{2 \cdot 2^{n} \cdot 5^{n}+10^{n}-1}=\lim _{n \rightarrow \infty} \frac{2 \cdot 10^{n}-5^{n}+9 \cdot 3^{n}}{8 \cdot 10^{n}-1} \\
& \left\{\begin{array}{l}
a^{n} b^{n}=(a b)^{n} \\
a^{n}=\left(\frac{a}{b}\right)^{n} \\
b^{n}
\end{array}=\lim _{n \rightarrow \infty} \frac{15^{n}\left(2-\frac{5^{n}}{10^{n}}+9 \cdot \frac{3^{n}}{10^{n}}\right)}{10^{n}\left(8-\frac{1}{10^{n}}\right)}\right. \\
& =\lim _{n \rightarrow \infty} \frac{\left(2-\left(\frac{5}{10}\right)^{n}+9\left(\frac{3}{16}\right)^{n}\right)}{\left(8-\left(\frac{1}{10}\right)^{n}\right)} \\
& =\frac{2}{8}=\frac{1}{4}
\end{aligned}
$$

n(arb): © © molires $\lim _{n \rightarrow \infty} \frac{7^{n+2}-4^{n-2}}{7^{n-1}+3^{n}}$
กิถี

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{7^{n+2}-4^{n-2}}{7^{n-1}+3^{n}}=\lim _{n \rightarrow \infty} \frac{\left(7^{2} \cdot 7^{n}-\frac{4^{n}}{4^{2}}\right)}{\left(\frac{7^{n}}{7}+3^{n}\right)} \quad \begin{array}{l}
a^{m+n}=a^{m} \cdot a^{n} \\
a^{m-n}=\frac{a^{m}}{a^{n}}
\end{array} \\
& =\lim _{n \rightarrow \infty} \frac{7^{n}\left(7^{2}-\frac{1}{4^{2}} \frac{4^{n}}{7^{n}}\right)}{7^{n}\left(\frac{1}{7}+\frac{3^{n}}{7^{n}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{7^{2}-\frac{1}{4^{2}}\left(\frac{4}{7}\right)^{n}}{\frac{1}{7}+\left(\frac{3}{7}\right)^{n}} 0 \\
& =\frac{7^{2}}{7 / 7}=7^{3}
\end{aligned}
$$

