(7) The comparison test: พิจารณาอนุกรม $\sum_{n=1}^{+\infty} a_{n}$ และ $\sum_{n=1}^{+\infty} b_{n}$ ที่

$$
0 \leq a_{n} \leq b_{n} \text { สำหรับทุก } n \geq 1
$$

ถ้า $\sum_{n=1}^{+\infty} b_{n}<+\infty$ แล้ว $\sum_{n=1}^{+\infty} a_{n}<+\infty$
ถ้า $\sum_{n=1}^{+\infty} a_{n}=+\infty$ แล้ว $\sum_{n=1}^{+\infty} b_{n}=+\infty$

Moordn: © $\sum_{n=n}^{\infty} \frac{1}{2 n^{2}+n}$
nิช̛. $n>0 \Rightarrow 2 n^{2}+n>2 n^{2} \geq n^{2}$

$$
\Rightarrow \frac{1}{\frac{2 n^{2}+n}{a n}}<\frac{1}{\frac{1}{n^{2}}} \frac{b_{n}}{}
$$

Rfosm $\frac{1}{2 n^{2}+n}<\frac{1}{n^{2}} \forall n \geqslant 1$ IIA: $\sum_{n=1}^{\infty} \frac{1}{n^{2}}<+\infty$
Ane the Comparison test $0=102 i n \sum_{n=1}^{\infty} \frac{1}{2 n^{2}+n}<+\infty$
(2) $\sum_{n=1}^{\infty} \frac{3}{5 n-2}$

$$
\begin{aligned}
5 n>5 n-2 & \Rightarrow \frac{1}{5 n}<\frac{1}{5 n-2} \\
& \Rightarrow \frac{3}{\frac{5 n}{a n}}<\frac{3}{\frac{5 n-2}{b_{n} \forall n \geqslant 1}}
\end{aligned}
$$

Denman $\sum_{n=1}^{\infty} \frac{3}{5 n}=\frac{3}{5} \sum_{n \rightarrow 1}^{\infty} \frac{1}{n}=+\infty$
LWoom $\frac{3}{5 n}<\frac{3}{5 n-2}$ *n>1 iosigilaisn $\sum_{n=1}^{\infty} \frac{3}{5 n-2}=+\infty$
(3) $\sum_{n=1}^{\infty} \frac{1}{2^{n}+\sqrt{n}}$

तิชิก जिएm $\sqrt{n}>0 \Rightarrow 2^{n}+\sqrt{n}>2^{n}$

$$
\Rightarrow \frac{\frac{1}{2^{n}+\sqrt{n}}}{a_{n}}<\frac{1}{2^{n}} b_{b_{n}}^{b_{n \geqslant 1}}
$$

Anom $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}<+\infty$

$$
\Rightarrow \sum_{n \rightarrow 1}^{\infty} \frac{1}{2^{n}+\sqrt{n}}<+\infty
$$

The limit Comparison test
(8) The limit comparison test: พิจารณาอนุกรม $\sum_{n=1}^{+\infty} a_{n}$ และ $\sum_{n=1}^{+\infty} b_{n}$ ที่
$a_{n} \geq 0$ และ $b_{n}>0$ สำหรับทุก $n \geq 1$ และ $\lim _{n \rightarrow+\infty} \frac{a_{n}}{b_{n}}=L$
ถ้า $L=0$ และ $\sum_{n=1}^{+\infty} b_{n}<+\infty$ แล้ว $\sum_{n=1}^{+\infty} a_{n}<+\infty$
ถ้า $0<L<+\infty$ และ $\sum_{n=1}^{+\infty} b_{n}</=+\infty$ แล้ว $\sum_{n=1}^{+\infty} a_{n}</=+\infty$
ถ้า $L=+\infty$ และ $\sum_{n=1}^{+\infty} b_{n}=+\infty$ แล้ว $\sum_{n=1}^{+\infty} a_{n}=+\infty$

Nönos:
(1) $\sum_{n=1}^{\infty} \frac{2 n+1}{(n+1)^{2}}$

रิชิ? กinurate $a_{n}=\frac{2 n+1}{n^{2}+2 n+1} \quad \forall n \in N$
Frome inen $b_{n}=\frac{1}{n} \quad \forall n \geqslant 11 \Rightarrow \sum_{n=1}^{\infty} b_{n}=+\infty$
ma.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{2 n^{2}+n}{n^{2}+2 n+1} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}\left(2+\frac{1}{n}\right)}{n^{2}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)}=2
\end{aligned}
$$

otวan the the limit comparison test 0:lath

$$
\sum_{n \rightarrow 1}^{\infty} \frac{2 n+1}{(n+1)^{2}}=+\infty
$$

© $\sum_{n=1}^{\infty} \frac{1}{3^{n}+2^{n}}$
तิช̛̃n niurotín $a_{n}=\frac{1}{3^{n}+2^{n}} \quad \forall n \geqslant 1$
wortifon $b_{n}=\frac{1}{3^{n}} \quad \forall n \geqslant 1 \Rightarrow \sum_{n=1}^{0} b_{n}=\sum_{n=1}^{0} \frac{1}{3^{n}}$

$$
=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}<+\infty
$$

$$
\begin{aligned}
& \text { 110: } \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{3^{n}+2^{n}}}{\frac{1}{3^{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{3^{n}}{3^{n}+2^{n}}=\lim _{n \rightarrow \infty} \frac{1}{1+\left(\frac{2}{3}\right)^{n}} 0 \\
& =1
\end{aligned}
$$

Iwm:a: h's he the limit comparism tert ivarg Math

$$
\sum_{n=1}^{\infty} \frac{1}{3^{n}+2^{n}}<+\infty
$$

(3) $\sum_{n=1}^{\infty} \frac{3 n^{3}-2 n^{2}+4}{n^{7}-n^{3}+2}$
(4) $\sum_{n=1}^{\infty} \frac{1+n \ln n}{n^{2}+5}$

तิช์้ nาumकोi $a_{n}=\frac{1+n \ln n}{n^{2}+5} \quad \forall n \geqslant 1$

11 ลuनึn $b_{n}=\frac{1}{n} \quad \forall n>11 \Rightarrow \sum_{n \rightarrow 1}^{\infty} b_{n}=+\infty$
In:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1+n \ln n}{n^{2}+5}}{\frac{1}{n}} \\
&=\lim _{n \rightarrow \infty} \frac{n+n^{2} \ln n}{n^{2}+5} \\
&=\lim _{n \rightarrow \infty} \frac{1^{0}+\ln n}{1+\frac{5}{n^{2}}}=+\infty \\
& \infty
\end{aligned}
$$

1 1 m: a: $N_{2} \sum_{n=1}^{\infty} \frac{1+n \ln n}{n^{2}+5}=+\infty$
5.3 0นุกรมมสล์์

OL1nssivicio own nseroof higl

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n} \text { Luer } a_{n} \geqslant 0 \forall n \geqslant 1
$$

(9) The (Leibniz's) alternating series test: พิจารณาอนุกรมสลับ $\sum_{n=1}^{+\infty}(-1)^{n+1} a_{n}$ ที่
©
$a_{n} \geq 0$ และ $a_{n} \geq a_{n+1}$ สำหรับทุก $n \geq 1$
ถ้า $\lim _{n \rightarrow+\infty} a_{n}=0$ แล้ว $\sum_{n=1}^{+\infty}(-1)^{n+1} a_{n}<+\infty$
$\frac{\text { Noerm: }}{\text { (1 }} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$
å̛n! Fonm $a_{n}=\frac{1}{n} \quad \forall n \geqslant 1$
นึ้० $\lim _{n \rightarrow \infty} \frac{1}{n}=0 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}<+\infty$
(2) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(1-n)}{n(n+1)}$
nơn Fnam $\sum_{n \rightarrow 1}^{\infty}(-1)^{n} \frac{(1-n)}{n(n+1)}=\sum_{n \rightarrow 1}^{\infty}(-1)^{n+1} \frac{(n-1)}{n(n+1)}$

$$
\Rightarrow a_{n}=\frac{n-1}{n(n+1)} \quad \forall n \geqslant 1 \quad \Rightarrow\left[f^{\prime}(x)=-\frac{(x-1)^{2}}{\left(x^{2}+2 x\right)^{2}}<0\right]
$$

11ロ!

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{n-1}{n(n+n)} \\
& =\lim _{n \rightarrow \infty} \frac{n-1}{n^{2}+n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}-\frac{1}{n^{2}}}{1+\frac{1}{n}}=0
\end{aligned}
$$

IWMIA: सीb $\sum_{n=1}^{\infty}(-1)^{n} \frac{(1-n)}{n(n+1)}<t \infty$

